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Chapman-Enskog Velocity Distribution
for Tracer Diffusion
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The Chapman-Enskog method is used to obtain an approximate velocity dis-
tribution function for tracer diffusion in dilute hard-sphere mixtures. Different
ratios of the mass of the tracer to that of the excess component (including the
well-known limiting cases of the Lorentz and the Rayleigh models) are
considered and the corresponding diffusion coefficients are also evaluated. A
comparison with the recent results of Tompson and Loyalka for both the
diffusion coefficients and the distribution functions provides a perspective on the
usefulness and nature of the approximate method.

KEY WORDS: Chapman-Enskog method; tracer diffusion; velocity distribu-
tion function.

1. INTRODUCTION

The ability to provide explicit expressions for the transport properties of
dilute gases and gas mixtures in terms of the intermolecular forces is
perhaps one of the greatest achievements of kinetic theory. The calcula-
tional procedures are nowadays fairly standard topics, which may be
found, for instance, in the monographs by Chapman and Cowling!" and
Ferziger and Kaper.” But one must always bear in mind that a long
period existed between the derivation of the Boltzmann equation® and the
appearance of a general (albeit approximate) method to solve it. This
method was derived independently by Chapman'® and Enskog.”® Thus,
prior to 1917, only in a few particular cases had the transport properties
been investigated. These include the gas composed of Maxwell molecules,
the model considered by Lorentz® to describe electronic transport in
metals, and the Rayleigh piston.”” A common feature of these three models
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is that one may obtain the exact velocity distribution functions and trans-
port coefficients and hence they provide the appropriate framework to test
the accuracy of approximate results. Such tests have been conducted for the
transport coefficients, ) which usually constitute the interesting quantities,
but to my knowledge very little, if anything, has been done concerning the
distribution functions. It is the major aim of this paper to carry out an
explicit comparison between the “exact” velocity distribution functions for
tracer diffusion in dilute binary hard-sphere gas mixtures (for various ratios
of the mass of the tracer to that of the excess component) and the Sonine
polynomial expansion that approximates the same functions within the
context of the Chapman—Enskog method at the Navier—Stokes level. These
velocity distribution functions are apparently of interest in several
problems of rarefied gas dynamics and particle transport. The “exact”
results are taken from a recent paper by Tompson and Loyalka® in which
they generalize the pioneering effort of Pidduck,® who, already in 1915
and long before the age of electronic computers, numerically solved the
Boltzmann equation and computed very accurately the self-diffusivity.

The paper is organized as follows. In the next section I recall the main
steps in the Chapman-Enskog method for a dilute binary hard-sphere gas
mixture up to the Navier—Stokes level and later consider the specific case
of tracer diffusion. This is followed in Section 3 by the outline of the
method to transform the integral equation appropriate for tracer diffusion
to a system of linear equations for the Sonine coefficients. The paper ends
in Section 4 with a discussion of the numerical results and some concluding
remarks.

2. CHAPMAN-ENSKOG INTEGRAL EQUATIONS FOR DILUTE
BINARY MIXTURES

2.1. General Case

In the case of binary mixtures and in the absence of an external
outside field the two single-particle distribution functions fi(r, v,, £}(i=1, 2)
obey a set of two coupled nonlinear Boltzmann equations of the form

d
(gﬁv, 'a) A v =0 f) + Tl ) (1)

0
<_+V2‘5>fz(ravzat)=J21(f2f1)+J22(f2fz) (2)
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where
Jy(f;f;) = ” G(Vji' E)(Vji : ]2) O'?j

< LAx, v 1) fi(n vi, ) = filr, v, 1) £ v, 1) ]
xdkdv, (i,j=1,2) '

Here f,(r, v;, t) is the average number of hard spheres of component i
(with diameter ¢; and mass m,) at the position r with velocity v, at time #;
v; =V, — v, is the relative velocity of two spheres with velocities v; and v,,
respectlvely, k is a unit vector directed along the line of centers from the
sphere of component j to the sphere of component i upon collision, 4 is the
Heaviside step function, and o,=3(0,+0,). Here v; and v; are the
velocities of the restituting collision, which are connected to those of the
direct collision v, and v, by the relations

Vi=V,+2M;(v; -k k
V= 2M (vt k ) k

(3)

V=

where M;=m,;/m,m, Defining the mass ratio u=m,/m,, one then has
My, =p/(1+p) and My =(1+p)~"

The molecular fluxes and the transport coefficients for binary mixtures
(up to the Navier—Stokes level) can be directly obtained from Egs. (1) on
the basis of the Chapman-Enskog method. Since the procedure is well
known and easily available, I only state here the form of the approximate
functions up to that level (and the associated linear integral equations) that
arise in the method. For all details of the derivations, see Ferziger and
Kaper® or Chapman and Cowling."

To first order in the gradients of the local number densities 7, and #,,
local hydrodynamic velocity u, and local temperature T defined by

nr, z)=jf,.(r, v,0dv, (i=1,2) (4a)
2
o ue =3 [ £t v, my, dv, (4b)
and
3 2 1
Sl 0 ky T(, )= %) jf,.(r, Vi 1) sm V3, (4c)

i=1

where p =p, + p, is total mass density, p,=m;n, (=1, 2) is the mass den-
sity of species i, n =, + n, is the total number density, V,(r, £)=v,—u(r, 1)
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is the peculiar velocity of species i, and kg is Boltzmann’s constant, one
approximates the distribution f;(r, v;, t) by fU(r, v;, 1) as follows:

fil v, =B, v,, 1)
=0 v, 1+ 4.(r, v, 1)]  (i=1,2) (5)
Here
[O=100 v, 1)

mo NP mViny
=ni(r’t)<2nkBT(r,t)> P Ty b ©

are local Maxwellians and ¢,(r, v;, t) can be written in the form

ou

b0ve )=~ [ AV) Tlos T+B(V): 5+ 3 DAV)d |
(i=1,2) (7)

where the functions A;, B,, and D/ are solutions to the following integral
equations:

2 fO my: s
,-; S 15(A) " <2kBT 2>V, (i=1,2) (8a)
2 n;n, SO, 1
I (By= ———(V.V,—=-V?2 i=1,2 8b
T ) nkBT< Vs ,D) (i=1,2)  (3b)
2 . (0) .
3 oo = -Lo (6B k-t 6
j=1 n ni p

in which [ is the unit tensor, the operator /; is defined by

1
Iij(F)zn

iy

| 00V, By, k)
X o3 O ()F i+ Fj— F,— F,) dk dv, ©)

and F; stands for F;(V/). Since the integral operators I; are isotropic in
velocity space, it follows that the A;, B,, and D¥ are also isotropic tensors
in velocity space, i.e. (i=1, 2),

A (V)=4,(V)V, (10a)
Bi(vi)zBi(Vi)(ViVi—%VizD) (IOb)
DEV)=DXV)V, (k=1,2) (10c)
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Also, the requirement that the n,, u, and T in Eq. (6) are the true local
number densities, hydrodynamic velocity, and temperature, respectively,
imposes certain subsidiary conditions on the functions A; and D/ that
assure the uniqueness of the solution, namely

2
S [fOmyia,av,=0 (11a)
i=1
and
2
S [rOmyipkav=0 (k=1,2) (11b)
i=1
On the other hand, uniqueness of the solution of Eq.{8c) requires in

addition

2
y %’D{:O (i=1,2) (11c)
j=1

The diffusion driving forces d; (i=1, 2) appearing in ¢,(r,v,, t) [cf.
Eq. (7)] reduce in the absence of external forces to

di=ﬁ<ﬂ>+(”_f_&>ilogp (i=1,2) (12a)
or p

n n or

where the hydrostatic pressure p = nky T. Because

3|
f
I

—

el

.

= |®
i

i

it follows from Eq. (12a) that
dl = “dz (12b)

2.2, Tracer Diffusion

Let us now assume that we have a binary mixture in which one of the
components, say component 1, is present in tracer concentration, i.e.,
n,<n,=n or v=n,/n, <1. Further, in order to study tracer diffusion, we
also assume that mechanical equilibrium has been established (so that
Op/dr =0) and that the only nonuniformity in the mixture is due to a con-
centration gradient. Under these circumstances, neglecting all the terms
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which are of O(v) or higher with respect to those which are of O(1) as
v — 0, reduces the set of integral equations (8) to the set

n
I, = — 2 /O, (13a)
1
)
15, + L rgmh =Ly, (13b)
n, n,
where
1 [ r 2 £(0) £(0)
1 F) = — [[ 0V, k)Y, ) 037 0
it
x (F/—Fydkdv, (i, j,1=1,2) (14)

and the superscript tr indicates that we only retained terms of O(1) in the
limit as v — 0. .

Notice that Eq. (13a) is decoupled from Eq. (13b), implying that, for
tracer diffusion, it is as if the excess component 2 was always in (local)
thermal equilibrium, although, as should be clear from Eq. (13b), this is
certainly not the case. Such decoupling is the origin of the agreement in the
values of tracer diffusion coefficients computed from seemingly different
models, as has been discussed elsewhere.'*!" For our purposes suffice it to
say that Eq.(13a) is the dimensional version of Eq. (2) in the paper by
Tompson and Loyalka® and will be the basis of the subsequent analysis.
In fact, their @,(c) is related to our D? by

1/2 2
mz“)/ G2

(I;d(c) = (—— m2

ny

Di(c) (15)

And of course it follows from the subsidiary condition (11c) that D; may
be easily determined once D} has been found from the solution to
Eq. (13¢).

To close this subsection and for the sake of completeness, note that
the diffusion coefficient as defined in Eq. (4) of Tompson and Loyalka® is
thus given in terms of our D3(c) as

4 2 (kg (o
D,= p <—BT> f e*D¥c)e " de (16)

3ngmym, \ wm, 0

3. VELOCITY DISTRIBUTION FUNCTION FOR
TRACER DIFFUSION

Except for two particular limiting cases, namely the Lorentz model
(m, = finite, m, — oo, so that y—0) and the Rayleigh model (m;= oo,
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m, =finite, so that u— o), no closed-form analytical solutions to
Eq. (13a) may be obtained for arbitrary u. In the Lorentz model (super-
script L)

n

D*V)=——s 17

PO = e (17)
whereas in the Rayleigh model (superscript R)
3/mN\"? n

DRV )=z 18

() 8<m2> nymot, (18)

These results are obtained after appropriate expansions of the collision
operator I1; | are performed and the above limits of u are taken."*'" On
the other hand, the case p=1 was first solved numerically by Pidduck®
and later reexamined by Pekeris,"? who used a somewhat different
numerical strategy. Very recently, Tompson and Loyalka® generalized the
numerical approach of Pidduck for arbitrary u and reported numerical
values of the dimensionless velocity distribution function @,(c) for selected
values of u.

I here follow a different route, more akin to the spirit of the Chapman—
Enskog procedure. In this procedure, the function Dj is expanded in a
convenient complete set of orthonormal polynomials, the Sonine poly-
nomials, so that

m, = m, V32
D\(V,)=—X d“}S"’( ! 1) (19)
not kBTE‘O Lro32 2k T

where SY)(x) is the Sonine polynomial of order r and index 3/2, and 4],
are referred to as Sonine coefficients. We now take, as usual, the so-called
Nth Enskog approximation, ie., we let the index r in the summation
appearing in Eq. (19) rum from r=0 to r= N — 1. Substituting this Nth
Enskog approximation in Eq. (13c), multiplying both sides of the resulting
equation with

NG <m1 V%) mV,
2\ 2kuT) 2ky T

and subsequently integrating over v, leads to the following set of N linear
equations for the coefficients d{')[N] (r=0, 1,.., N—1), in the Nth Enskog
approximation,

_3kBT£
= .

N-1
Y d{IN1d, S (p=0,L.,N—1)  (20)
r=0
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where
=[S{(C?) C, S{HC?) CTh, (21)

are the so-called bracket integrals defined as
[F, GTia=| Gi1in (P dv, (22)

and 7, ; is given by Eq. (14). Analytical results for d,,, have been recently
derived by Lindenfeld and Shizgal,"*’ which yield

2k T(m +m) 1/2 X X—t X—1t—3s§ 1 1—n
dpq:z[ 2 - 2:| 6%222 Z Z Z

mym, t=0 s=0 m=0 n=0 r=0
d(r+s+t+n+1)! I'p+q—2s—2t—m—r—n+1/2)
(t+n+)rts! (p—m—s—0D(g—m—s—itN (1—r—s)m!
Qt+n+1) | (t+n+1)!
2n! (2t + 1) t'n!
X (M, — My )"+ (23)

}Miz-i—t—rnMgl+q+n—2m—237t

where x =min(p, ¢). This allows us in principle to solve Eq. (20) for the
d{') and upon using the results in the Nth Enskog approximation to
Eq. (19) (ie., with 0<r<N—1 in the summation), we finally get D}(V,).
Once DY(V,) is known, it is straightforward to obtain ds(c) and D,,
through Eqgs. (10¢), (11¢), (15), and (16). We thus see that our basic task
is the actual solution of the system of linear equations (20) for a given N.
And it should be clear that although the algebra may be performed by
hand, beyond N=2 or 3 it is much more practical to use a standard
numerical algorithm to get the desired answer. This I have done, and, with
the aid of the subroutine MATIN2 of the CERN computer library, solved
Eqgs. (20) for N up to 50 and different u’s. The results of the computations
for ¢,(c) and D,, are shown in Tables I-IV, some of which also include,
for comparison, corresponding results of Tompson and Loyalka.®

4. DISCUSSION

A simple analysis of the results in Tables I and II shows that, for
p~'< 1, our approximate solution for —g¢,(c) [as obtained after using
Egs. (11c), (15), and (20)] is a very good representation of the actual solu-
tion to Eq. (13a) over a wide range of values of ¢ (0.01 < ¢ <4.50) already
for N=10. Increasing the number of polynomials indeed improves the
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Table Il. Convergence of the Approximate &)d(c) to the Exact Solution in
Terms of the Number N of Sonine Polynomials [cf. Eq. (19)]
for Two Values of p~'

—&,(c)

ut=05 ©~1=100

¢ 10 20 30 50 10 20 30 45

0.01 1.0428 1.0429  1.0429 1.0429 0.3578 04219 0.4469  0.4520
0.10 1.0421 1.0422  1.0422 1.0422 0.3549 04161 04391 04437
0.50 1.0265 1.0265 1.0265 1.0265 0.293% 0.3083 0.3081  0.3078
1.00 0.9834 09834 0.9834 09834 0.1834 0.1808 0.1817  0.1817
2.00 0.8660  0.8660 0.8660 0.8660 0.0950 0.0947 0.0943  0.0944
3.00 0.7554  0.7554 0.7554 0.7554 0.0655 0.0626 0.0631  0.0633
4.00 0.6662  0.6659 0.6659 0.6659 0.0996 0.0484 0.0515  0.0452
5.00 0.6025 0.5949  0.5948 0.5948 1.5902 0.5462 -0.044 0.0718
5.50 0.6667 0.5643  0.5647 0.5655 13.422 -3.543 -1.629 0.9364
6.00 -1.895 0.5410  0.5377 0.5835 -381.5 22.101 52920 83097

approximation for the higher values of ¢, but the price to be paid is that
the CPU time required is also much greater. On the other hand, for
1 <u~'<10, the approximate solution is good only for 0.50<c¢<3.40
even when N =50, and for smaller N it is only reasonable in a narrower
range of ¢’s. Note in particular the appearance of negative values for the
distribution function, which of course make no physical sense. For higher
values of u~' there are not enough data in the paper by Tompson and
Loyalka® to compare with. However, on the basis of the limited available
information (see TableIll), it seems that the approximate solution

Table IIl. Comparison of Approximate ¢ {c)
with Corresponding Values in Tompson and
Loyalka‘® (TL) for p~'=238,0

$4lc)

¢ TL : Present
0.01 0.4535 0.1466
0.05 0.3934 0.1455
0.10 0.2946 0.1421
0.50 0.0727 0.0752
1.00 0.0365 0.0369
3.00 0.0122 0.0119

6.00 0.0061 ~-13.38
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becomes much poorer in general both for ¢<0.50 and ¢>3.40 as u '
increases. Also, apart from running into some numerical troubles that
already show up for N =150, the increase in CPU time would make the
calculation for bigger N prohibitively expensive. Concerning the diffusion
coefficients, Table IV clearly indicates that the numbers obtained with
N=10 are within 1% of the exact answers, corroborating our earlier
findings, '®'" while of course if we take N = 50, we get practically the same
results as Tompson and Loyalka for all the different y’s.

The facts just stated about the approximate values for —¢,(c) and D,
deserve some further elaboration. First of all, it should not be surprising
that we get accurate values of D, even when the approximation to —d,(c)
is not very accurate, due to the equivalence of the Sonine polynomial
expansion [Eq. (19)] and the variational method of solution of the linear
integral equation [Eq. (13a)], as exposed in Ferziger and Kaper.®®

Table IV. Ratios of Diffusion Coefficients from Thompson and Loyalka'® (TL)
and Two Values of N to the First Enskog Approximation D, ;¢ and
the Lorentz Approximation D,,,,, for Selected u~"*

DC=D12/D12CE1 DL=D12/D12Lor
Present Present
pt TL N=50 ~N=10 TL N=30 N=10
0.0718 (28/390) 1.0000  1.0002 1.0002 34139 34145 3.4145
0.1 1.0003 1.0003 1.0003 29314 29314 29314
0.2 1.0012  1.0011 1.0012 2.1669  2.1669 2.1669
0.5 1.0064  1.0064 1.0063 1.5402  1.5401 1.5401
1.0 1.0190  1.0190 1.0190 12733 1.2732 1.2732
2.0 1.0429  1.0429 1.0429 1.1286  1.1286 1.1286
5.0 1.0803 1.0803 1.0802 1.0456  1.0456 1.0455
10.0 11017 11017 1.1013 1.0209  1.0209° 1.0206
50.0 1.1246  1.1246° 1.1229 1.0036  1.0036°  1.0021
100.0 1.1281 1.1280°  1.1259 10017  1.0016°  1.0000
238.0 11302 1.1300° 1.1277 1.0007  1.0005°  1.0000
o) 1.1318¢ 1.0000°¢
4 kg T\V2| 9 1 12
DlzCEl —37'5(#0'12)1/2 ( ", ) a (/175) (1 +#)
and
D _ 2 2kg T\
12Lor 373 ne2, \ my
b N=45.

¢ Theoretical limit.
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Second, the fact that Tompson and Loyalka find that for u~' <1 the
first Enskog approximation to — ¢ ,(c) is, relatively speaking, quite close to
the exact solution is tied to the fact that in the limit ! =0 one obtains
the Rayleigh model. In this model the collision operator reduces to its
Brownian motion form"* and the first Sonine polynomial is the exact
eigenfunction for diffusion [ —¢%(c) =3 y/ﬁ]. The Brownian motion form
is obtained after an expansion of the collision operator in powers of u~',
keeping terms to O{u~') only, and thus it is no surprise that its eigen-
function is a good approximation also when y~' < 1. A similar argument
applies to the present results for u~* < 1, since the Sonine polynomials are
the proper eigenfunctions of the Rayleigh model. On the other hand, it is
clear that it would require the infinite series of Sonine polynomials in
Eq. (19) to represent the exact distribution function in the Lorentz model
[e=0, —¢L(c)= (u/m)"*/c], which explains why there is a poorer agree-
ment between the present results and those of Tompson and Loyalka when
1~ 1> 1 and also suggests the source of the difficulty in matching the low-¢
values of the distribution function for these u’s.

It is important to stress that all the calculations reported in this paper
(and also those by Pidduck,® Pekeris,"'* and Tompson and Loyalka®)
are restricted to hard spheres. Nevertheless, by using the analytical results
for the bracket integrals obtained by Lindenfeld and Shizgal®™® in the case
of repulsive intermolecular interactions, one could perform similar studies
for these other models as the one conducted here, simply by replacing the
appropriate expressions for d,, in Egs. (20). The comparison with the exact
solutions would be hampered, though, by the fact that, except in the case
of Maxwell molecules, where the Sonine polynomials are the proper eigen-
functions and the exact solution for diffusion is thus well known, no study
comparable to the one by Tompson and Loyalka exists to my knowledge
for general repulsive models. We already know that the convergence of the
Sonine polynomial expansion, as it manifests itself in the value of the diffu-
sion coefficient, is slower for hard spheres than for any other repulsive
interaction where the force F~r~% with S<a<o00. And, on the basis of
this information and the analysis of the results of the present paper, it is
not therefore unreasonable to expect that the approximate Chapman-—
Enskog velocity distribution function for tracer diffusion, expressed as a
finite series of N Sonine polynomials (with a similar relationship between
the required N, p, and the range of ¢’s where the accuracy would be as
good as the one illustrated here for hard spheres) will provide, in the case
of repulsive intermolecular potentials, a good representation of the actual
distribution function.

822/57/3-4-32
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