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The Chapman-Enskog method is used to obtain an approximate velocity dis- 
tribution function for tracer diffusion in dilute hard-sphere mixtures. Different 
ratios of the mass of the tracer to that of the excess component (including the 
well-known limiting cases of the Lorentz and the Rayleigh models) are 
considered and the corresponding diffusion coefficients are also evaluated. A 
comparison with the recent results of Tompson and Loyalka for both the 
diffusion coefficients and the distribution functions provides a perspective on the 
usefulness and nature of the approximate method. 

KEY WORDS: Chapman-Enskog method; tracer diffusion; velocity distribu- 
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1. I N T R O D U C T I O N  

The ability to provide explicit expressions for the transport properties of 
dilute gases and gas mixtures in terms of the intermolecular forces is 
perhaps one of the greatest achievements of kinetic theory. The calcula- 
tional procedures are nowadays  fairly standard topics, which may be 
found, for instance, in the monographs by Chapman and Cowling (1) and 
Ferziger and Kaper. (2) But one must always bear in mind that a long 
period existed between the derivation of the Boltzmann equation (3) and the 
appearance of a general (albeit approximate) method to solve it. This 
method was derived independently by Chapman (4) and Enskog. (5) Thus, 
prior to 1917, only in a few particular cases had the transport properties 
been investigated. These include the gas composed of Maxwell molecules, 
the model considered by Lorentz (6) to describe electronic transport in 
metals, and the Rayleigh piston. (7) A common feature of these three models 
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is that one may obtain the exact velocity distribution functions and trans- 
port coefficients and hence they provide the appropriate framework to test 
the accuracy of approximate results. Such tests have been conducted for the 
transport coefficients, r which usually constitute the interesting quantities, 
but to my knowledge very little, if anything, has been done concerning the 
distribution functions. It is the major aim of this paper to carry out an 
explicit comparison between the "exact" velocity distribution functions for 
tracer diffusion in dilute binary hard-sphere gas mixtures (for various ratios 
of the mass of the tracer to that of the excess component) and the Sonine 
polynomial expansion that approximates the same functions within the 
context of the Chapman-Enskog method at the Navier-Stokes level. These 
velocity distribution functions are apparently of interest in several 
problems of rarefied gas dynamics and particle transport. The "exact" 
results are taken from a recent paper by Tompson and Loyalka ~s) in which 
they generalize the pioneering effort of Pidduck, r who, already in 1915 
and long before the age of electronic computers, numerically solved the 
Boltzmann equation and computed very accurately the self-diffusivity. 

The paper is organized as follows. In the next section I recall the main 
steps in the Chapman-Enskog method for a dilute binary hard-sphere gas 
mixture up to the Navier-Stokes level and later consider the specific case 
of tracer diffusion. This is followed in Section 3 by the outline of the 
method to transform the integral equation appropriate for tracer diffusion 
to a system of linear equations for the Sonine coefficients. The paper ends 
in Section 4 with a discussion of the numerical results and some concluding 
remarks. 

2. C H A P M A N - E N S K O G  INTEGRAL E Q U A T I O N S  FOR DILUTE 
BINARY M I X T U R E S  

2.1. General Case 

In the case of binary mixtures and in the absence of an external 
outside field the two single-particle distribution functions fi(r, vi, t)(i = t, 2) 
obey a set of two coupled nonlinear Boltzmann equations of the form 

~-t"~" Vl fl( r' u 1)= Jl l (f l f[)4-  Jl2(flf2) (1) 

q-v2 "~r fz(r' v2, t)=Jzl(fzfl)-4-J22(fzf2) (2) 
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where 

Jo(f'fJ) = f f  O(vj,. ;)(vii. ~) ~ 

x [fi(r ,  v;, t) fj(r,  vj, t ) - f / ( r ,  vi, t)~.(r, vi, t)] 

xdfcdvj ( i , j =  1, 2) 

Here f~(r, vr t) is the average number of hard spheres of component i 
(with diameter ai and mass m~) at the position r with velocity vi at time t; 
vie = v  j - v r  is the relative velocity of two spheres with velocities vj and v~, 
respectively, /~ is a unit vector directed along the line of centers from the 
sphere of component j to the sphere of component i upon collision, 0 is the 
Heaviside step function, and 1 ' ' a o = ~ ( a / + a j ) .  Here v i and v) are the 
velocities of the restituting collision, which are connected to those of the 
direct collision v i and vj by the relations 

V; = Vi+ 2Mji(vji" k) 
(3) 

vj = v j -  2M~j(Vje-/~) 

where M~=mi/m~mj. Defining the mass ratio #=ml/m2, one then has 
M~2 = #/(1 +/~) and M2~ = (1 +#) -1 .  

The molecular fluxes and the transport coefficients for binary mixtures 
(up to the Navier-Stokes level) can be directly obtained from Eqs. (1) on 
the basis of the Chapman-Enskog method. Since the procedure is well 
known and easily available, I only state here the form of the approximate 
functions up to that level (and the associated linear integral equations) that 
arise in the method. For all details of the derivations, see Ferziger and 
Kaper (2) or Chapman and Cowling. ~) 

To first order in the gradients of the local number densities nl and n2, 
local hydrodynamic velocity u, and local temperature T defined by 

and 

ni(r, t)= f f~(r, vi, t) dv~ ( i=  1, 2) (4a) 

2 

p(r, t) u(r, t) = ~ f f/(r,  vi, t) rniv i dvi (4b) 
i = 1  

3 2 f 1 2 5n(r, t) kBT(r, t ) =  Y' fi(r, Vi, t) .smiV~ dvi (4c) 
i = 1  

where p = P l  +P2 is total mass density, pi=mini ( i=  1, 2) is the mass den- 
sity of species i, n = n 1 + n2 is the total number density, Vi(r, t )=  vg-  u(r, t) 
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is the peculiar velocity of species i, and kB is Boltzmann's constant, one 
approximates the distribution ft(r, v~, t) by fll)(r, vi, t) as follows: 

f/(r, Vi, t) ~ f l l ) ( r ,  Vi, t) 

=fl~ (i= 1, 2) (5) 

Here 

f l  ~ -f l~ vi, t) 

mi )3/2 mi VZ(r, t) 
=ni(r, t) 2ukBT(r, tiJ exP2kBT(r, t) (i = 1, 2) (6) 

are local Maxwellians and ~bg(r, v~, t) can be written in the form 

1 # Ju Z D~(Vi) �9 dj ~b~(r, v,, t )= --n A~(V~)'T-I~ T+ U,(V~):~rr +j= 1 

(i = 1, 2) (7) 

where the functions Ai, Bi, and D~ are solutions to the following integral 
equations: 

j=l 7 I ~  -Jin \2kB T Vi (i= 1, 2) (8a) 

2 n~nj f,~ 1 ) 
J=Z~ -~-I, j(B)= ----nkB T V~V~- ~ V ~  (i= 1, 2) (Sb) 

j= 1 ~ _  i~( D n ~ n j  k _Jn~i" \[5~k- Vi (i, k = 1, 2) (8c) 

in which S is the unit tensor, the operator I~ is defined by 

1 
Iu(F ) = Jj O(Vsi" ~) 

n i n  j �9 

x a~jfl~176 + F5 -- F~- Fj) df~ dvj (9) 

and F'~ stands for F~(VI). Since the integral operators I o are isotropic in 
velocity space, it follows that the A,, B~, and D~ are also isotropic tensors 
in velocity space, i.e. (i = 1, 2), 

A,(V3 = A~(V,) V, 

B~(V~) = B~(V3(V,V~- 1 V ~ )  

D~(V~) = D~(V~) V~ (k = l,  2)  

(lOa) 

(lOb) 

(10c) 
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Also, the requirement that the n~, u, and T in Eq. (6) are the true local 
number densities, hydrodynamic velocity, and temperature, respectively, 
imposes certain subsidiary conditions on the functions A i and D{ that 
assure the uniqueness of the solution, namely 

2 
(0) ; f f ~ m i V i A i d v i = O  ( l la)  

i= l  

and 

2 

ff}~ ( k =  1, 2) ( l l b )  
i=1 

On the other hand, uniqueness of the solution of Eq. (8c) requires in 
addition 

2 
~ p D  i - p j  J - 0  ( i=1 ,2 )  ( l lc)  

j = l  

The diffusion driving forces di ( i= 1, 2) appearing in ~bi(r, vi, t) [cf. 
Eq. (7)] reduce in the absence of external forces to 

d i = ~  + ~ n - p )  ~ , o g  p ( i= 1, 2) (12a) 

where the hydrostatic pressure p = nkB T. Because 

~ ni ~ Pi 
- =  - - =  1 

i=1 n i=1 P 

it follows from Eq. (12a) that 

dl = -d2 (12b) 

2.2. Tracer Dif fusion 

Let us now assume that we have a binary mixture in which one of the 
components, say component 1, is present in tracer concentration, i.e., 
nl ~ n2 =n  or v = nl/n2 ~ 1. Further, in order to study tracer diffusion, we 
also assume that mechanical equilibrium has been established (so that 
3p/& = 0) and that the only nonuniformity in the mixture is due to a con- 
centration gradient. Under these circumstances, neglecting all the terms 
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which are of O(v) or higher with respect to those which are of O(1) as 
v --. 0, reduces the set of integral equations (8) to the set 

[(l'}tr 1)= n r(o) V (13a) 
- - 1 2 , 1 , - -  - -  _.-~ J 1  1 

rl  1 

i t ,  t n ~ ) + n i ~ 2 ( D ,  ) f~~ (13b) 
2 1 , 1 ~  

n I F/1 

where 

Io.,I(F) = - -  0(Vji �9 a~f (o)f j(o) 
?tinj 

x(F/-F~)dkdvj (i , j , l=l,  2) (14) 

and the superscript tr indicates that we only retained terms of O(1) in the 
limit as v -~ 0. 

Notice that Eq. (13a) is decoupled from Eq. (13b), implying that, for 
tracer diffusion, it is as if the excess component 2 was always in (local) 
thermal equilibrium, although, as should be clear from Eq. (13b), this is 
certainly not the case. Such decoupling is the origin of the agreement in the 
values of tracer diffusion coefficients computed from seemingly different 
models, as has been discussed elsewhere, v~ For our purposes suffice it to 
say that Eq. (13a) is the dimensional version of Eq. (2) in the paper by 
Tompson and Loyalka (8) and will be the basis of the subsequent analysis. 
In fact, their ~a(c) is related to our D~ by 

~a(c)=(rn2rc) 1/2 al:P2DZt(c ) (15) 
\ m l /  n m 2 

And of course it follows from the subsidiary condition ( l lc )  that D~ may 
be easily determined once D~I has been found from the solution to 
Eq. (13c). 

To close this subsection and for the sake of completeness, note that 
the diffusion coefficient as defined in Eq. (4) of Tompson and Loyalka (8) is 
thus given in terms of our D~(c) as 

f? 4 p____~2 (2kBT~l/2 c4D~(c)e_~2dc (16) 
D12-- 3 n~mlm2 \ ~ml / 

3. VELOCITY  D I S T R I B U T I O N  F U N C T I O N  FOR 
TRACER D IFFUSION 

Except for two particular limiting cases, namely the Lorentz model 
(ml =finite, rn2~ o% so that # ~ 0 )  and the Rayleigh model (ml ~ ~ ,  
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m2=finite, so that # ~ o o ) ,  no closed-form analytical solutions to 
Eq. (13a) may be obtained for arbitrary #. In the Lorentz model (super- 
script L) 

/7 
D ilL( V, ) /71 Vl 7.go.. 2 2 (17) 

whereas in the Rayleigh model (superscript R) 

/7 

D]R(v1) 8 \m2J nlrca~2 (18) 

These results are obtained after appropriate expansions of the collision 
operator I1~,1 are performed and the above limits of p are taken. (l~ On 
the other hand, the case p = 1 was first solved numerically by Pidduck (9) 
and later reexamined by Pekeris, (12) who used a somewhat different 
numerical strategy. Very recently, Tompson and Loyalka (8) generalized the 
numerical approach of Pidduck for arbitrary p and reported numerical 
values of the dimensionless velocity distribution function q~d(c) for selected 
values of #. 

I here follow a different route, more akin to the spirit of the Chapman- 
Enskog procedure. In this procedure, the function D~I is expanded in a 
convenient complete set of orthonormal polynomials, the Sonine poly- 
nomials, so that 

D{(V~) = ~ E ~ ~1,r~3/2 \ ~ j  (19) 

where (r) $3/2(X ) is the Sonine polynomial of order r and index 3/2, and d 1 1,t' 
are referred to as Sonine coefficients. We now take, as usual, the so-called 
Nth Enskog approximation, i.e., we let the index r in the summation 
appearing in Eq. (19) rum from r = 0  to r = N - 1 .  Substituting this Nth 
Enskog approximation in Eq. (13c), multiplying both sides of the resulting 
equation with 

S(p) f ml V21~ ml Vl 
3/2 \ 2k .  T J 2k~ T 

and subsequently integrating over vl leads to the following set of N linear 
equations for the coefficients d ~ [ N J  (r = 0, 1 ..... N -  1), in the Nth Enskog 
approximation, 

N-- 1 3ks T n 
(1) dpr 6po 0, 1,..., 1) (20) d l,rE N'] -- - -  (p = N -  

r=0 ml  171 
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where 

dpr 
~" (p) 2 (r) 2 t [s,/2(c )c, s n(c (21) 

are the so-called bracket integrals defined as 

[F, G]'~2 = f G, I12,~(F) dr1 (22) 

and 112,1 is given by Eq. (14). Analytical results for dpr have been recently 
derived by Lindenfeld and Shizgal, ('3) which yield 

L m l m 2  A 

2 ~-~ x t x t - s  1 1 n 

.. E E E E 
t = 0  s = 0  m = 0  n = O  r = O  

4'(r+s+t+n+ 1)! 
X 

F ( p + q - - 2 s - 2 t - m - r - n +  1/2) 

( t+n+l)!r!s!  ( p - m - s - t ) ! ( q - m - s - t ) ! ( 1 - r - s ) ! m !  

x ~ ( 2 t + n + l ) !  2=~1 ( t + n + l ) ! }  a~tl+,-~ nA/lP+q+n--Zrn--2s--t 
t ! , , !  _  ,-12  ,-21 

• ( M 1 2  - -  M 2 1 )  m + r + 2 s  (23) 

where x = rain(p, q). This allows us in principle to solve Eq. (20) for the 
d(1) and upon using the results in the Nth Enskog approximation to 1,r 

Eq. (19) (i.e., with 0 ~< r ~< N -  1 in the summation), we finally get DI~(V~). 
Once D11(V1) is known, it is straightforward to obtain 0~d(c) and D12 
through Eqs. (10~), (llc), (15), and (16). We thus see that our basic task 
is the actual solution of the system of linear equations (20) for a given N. 
And it should be clear that although the algebra may be performed by 
hand, beyond N = 2  or 3 it is much more practical to use a standard 
numerical algorithm to get the desired answer. This I have done, and, with 
the aid of the subroutine MATIN2 of the CERN computer library, solved 
Eqs. (20) for N up to 50 and different/~'s. The results of the computations 
for ~d(C) and D12 are shown in Tables I-IV, some of which also include, 
for comparison, corresponding results of Tompson and Loyalka. (8) 

4. D I S C U S S I O N  

A simple analysis of the results in Tables I and II shows that, for 
# - 1 <  1, our approximate solution for --qSd(C) [as obtained after using 
Eqs. (llc), (15), and (20)] is a very good representation of the actual solu- 
tion to Eq. (13a) over a wide range of values of c (0.01 <~c~<4.50) already 
for N =  10. Increasing the number of polynomials indeed improves the 
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Table II. Convergence of the Approximate ~d(C) to the Exact Solution in 
Terms of the Number N of Sonine Polynomials [cf. Eq. (19)] 

for Two Values of p-1 

# 1=0.5 ~-J = 10.0 

c 10 20 30 50 10 20 30 45 

0.01 1.0428 1.0429 1.0429 1.0429 0 .3578  0.4219 0.4469 0.4520 
0.10 1.0421 1.0422 1.0422 1.0422 0 .3549  0.4161 0.4391 0.4437 
0.50 1.0265 1.0265 1.0265 1.0265 0 .2939  0.3083 0.3081 0.3078 
1.00 0 .9834  0.9834 0.9834 0.9834 0 .1834  0.1808 0.1817 0.1817 
2.00 0 .8660  0.8660 0.8660 0.8660 0 .0950  0.0947 0.0943 0.0944 
3.00 0 .7554  0.7554 0.7554 0.7554 0 .0655  0.0626 0.0631 0.0633 
4.00 0 ,6662  0.6659 0.6659 0.6659 0 .0996  0.0484 0.0515 0.0452 
5.00 0 .6025  0.5949 0.5948 0.5948 1.5902 0.5462 ~ ) .044  0.0718 
5.50 0 .6667  0.5643 0.5647 0.5655 13.422 - 3 . 5 4 3  - 1 . 6 2 9  0.9364 
6.00 - 1 . 8 9 5  0.5410 0.5377 0.5835 -381.5 22.101 5.2920 8.3097 

approx imat ion  for the higher values of c, but  the price to be paid is that 

the C P U  time required is also much greater. O n  the other hand,  for 

1< /~-1~<10 ,  the approximate  solut ion is good only for 0.50~<c~<3.40 
even when N = 50, and  for smaller N it is only reasonable in a nar rower  

range of c's. Note  in part icular  the appearance of negative values for the 

dis t r ibut ion function,  which of course make no physical sense. For  higher 
values of # - 1  there are not  enough data  in the paper  by Tompson  and  

Loyalka  (8) to compare  with. However,  on the basis of the limited available 

informat ion  (see Table  III),  i t  seems that the approximate  solut ion 

Table III. Comparison of Approximate ~d(C) 
with Corresponding Values in Tompson and 

Loyalka Is) (TL) for p-1 =238,0 

c TL Present 

0,01 0.4535 0.1466 
0.05 0.3934 0.1455 
0.10 0.2946 0.1421 
0.50 0.0727 0.0752 
1.00 0.0365 0.0369 
3.00 0.0122 0.0119 
6.00 0.0061 -13.38 
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becomes much poore r  in general  bo th  for c < 0 . 5 0  and  c >  3.40 as kt 1 
increases. Also,  apa r t  f rom running  into some numer ica l  t roubles  tha t  
a l ready  show up for N =  50, the increase in C P U  time would  make  the 
ca lcula t ion  for bigger  N prohib i t ive ly  expensive. Concern ing  the diffusion 
coefficients, Table  IV clearly indicates  tha t  the numbers  ob ta ined  with 
N =  10 are within 1% of the exact  answers,  co r robo ra t i ng  our  ear l ier  
findings, (1~ while of course if we take  N =  50, we get prac t ica l ly  the same 
results as T o m p s o n  and  L o y a l k a  for all the different #'s. 

The  facts jus t  s ta ted abou t  the a p p r o x i m a t e  values for - ~ d ( e )  and  O12 
deserve some further e labora t ion .  F i rs t  of  all, it should  not  be surpr is ing 
tha t  we get accura te  values of D12 even when the a p p r o x i m a t i o n  to - ~ a ( c )  

is not  very accurate ,  due to the equivalence of the Sonine po lynomia l  
expans ion  [Eq.  (19)]  and  the var ia t iona l  me thod  of so lu t ion  of the l inear  
integral  equa t ion  [ E q  (13a)] ,  as exposed  in Ferz iger  and  Kaper .  (2) 

Table IV. Ratios of Diffusion Coefficients from Thompson and Loyalka 181 (TL) 
and Two Values of N to the First Enskog Approximation D12CE 1 and 

the Lorentz Approximation D12Lo r for Selected p-1 a 

D c = D 12/D12czl D L = D 12/D 12Lor 

Present Present 

p-1 TL N=50 N=10 TL N=50 N = I 0  

0.0718 (28/390) 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 
50.0 

100.0 
238.0 

oo 

1.0000 1.0002 1.0002 3.4139 3.4145 3.4145 
1.0003 1.0003 1.0003 2.9314 2.9314 2.9314 
1.0012 1.0011 1.0012 2.1669 2.1669 2.1669 
1.0064 1.0064 1.0063 1.5402 1.5401 1.5401 
1.0190 1.0190 1.0190 1.2733 1.2732 1.2732 
1.0429 1.0429 1.0429 1.1286 1.1286 1.1286 
1.0803 1.0803 1.0802 1.0456 1.0456 1.0455 
1.1017 1.1017 b 1.1013 1.0209 1.0209 b 1.0206 
1.1246 1.1246 b 1.1229 1.0036 1.0036 ~ 1.0021 
1.1281 1.1280 ~ 1.1259 1.0017 1.0016 b 1.0000 
1.1302 1.1300 b 1.1277 1.0007 1.0005 ~ 1.0000 
1.1318 c 1,0000 c 

4 
aD12cE, 3~(#aj2),/2 \ m, ) 

and  

n12L~ 3n3/2na22~ m, ) 

bN=45. 
c Theoretical limit. 
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Second, the fact that Tompson and Loyalka find that for/~-1 ~ 1 the 
first Enskog approximation to --~d(C) is, relatively speaking, quite close to 
the exact solution is tied to the fact that in the limit/~-1= 0 one obtains 
the Rayleigh model. In this model the collision operator reduces to its 
Brownian motion form ~ and the first Sonine polynomial is the exact 
eigenfunction for diffusion [ -~en(c)= 3#/x/-~ ]. The Brownian motion form 
is obtained after an expansion of the collision operator in powers of/~-1, 
keeping terms to 0(#  -1) only, and thus it is no surprise that its eigen- 
function is a good approximation also when # - 1 4  1. A similar argument 
applies to the present results for #-1 ~< 1, since the Sonine polynomials are 
the proper eigenfunctions of the Rayleigh model~ On the other hand, it is 
clear that it would require the infinite series of Sonine polynomials in 
Eq. (19) to represent the exact distribution function in the Lorentz model 
[ # =  0, -q~aL(c)= (l~/n)l/2/c], which explains why there is a poorer agree- 
ment between the present results and those of Tompson and Loyalka when 
# 1 >> 1 and also suggests the source of the difficulty in matching the low-c 
values of the distribution function for these/~'s. 

It is important to stress that all the calculations reported in this paper 
(and also those by Pidduck, (9) Pekeris, (12) and Tompson and Loyalka r 
are restricted to hard spheres. Nevertheless, by using the analytical results 
for the bracket integrals obtained by Lindenfeld and Shizgal (13) in the case 
of repulsive intermolecular interactions, one could perform similar studies 
for these other models as the one conducted here, simply by replacing the 
appropriate expressions for dpq in Eqs. (20). The comparison with the exact 
solutions would be hampered, though, by the fact that, except in the case 
of Maxwell molecules, where the Sonine polynomials are the proper eigen- 
functions and the exact solution for diffusion is thus well known, no study 
comparable to the one by Tompson and Loyalka exists to my knowledge 
for general repulsive models. We already know that the convergence of the 
Sonine polynomial expansion, as it manifests itself in the value of the diffu- 
sion coefficient, is slower for hard spheres than for any other repulsive 
interaction where the force F ~ r  -~ with 5 ~<e< oo. And, on the basis of 
this information and the analysis of the results of the present paper, it is 
not therefore unreasonable to expect that the approximate Chapman- 
Enskog velocity distribution function for tracer diffusion, expressed as a 
finite series of N Sonine polynomials (with a similar relationship between 
the required N, /~, and the range of c's where the accuracy would be as 
good as the one illustrated here for hard spheres) will provide, in the case 
of repulsive intermolecular potentials, a good representation of the actual 
distribution function. 

822/57/3-4-32 
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